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ON TESTING MONOTONE TENDENCIES

Richard L. Dykstra and Tim Robertson

SUMMARY

In certain problems, it may be expected that a regression function has

a substantial overall tendency to be monotone and yet we may not be certain

that all of the restrictions imposed by a simple order are satisfied. Dis-

tribution theory for likelihood ratio tests of homogeneity of a collection

of normal means when the collection is "decreasing on the average" and for

testing "decreasing on the average" as a null hypothesis, is presented. The

restriction "decreasing on the average" is less restrictive than the usual

monotone restriction and allows the data to give rise to "reversals" over

short ranges of valies of the parameter set. It is closely related to the

"starshaped ordering" restriction discussed in Shaked (Ann. Statist.

(1979)).
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INTRODUCTION AND SUMMARY. The detection )V a monotone relationsip between

two variables is an important problem in .;tatistics. Onu approach to such

problems is to base a conclusion about such a relationship upon an estimate

of, or a test of a hypothesis about, a regression function. Procedures for

making inferences about parameters which are known or suspected to satisfy

a trend have received considerable attention in the statistical literature

and a comprehensive treatment of much of the early work done on order

restricted inference is given in Barlow, Bartholomew, Bremner and Brunk

(1972).

In certain problems, it may be expected that the regression function

has a substantial overall tendency to be monotone and yet we may not be cer-

tain that all of the restrictions imposed by a simple order are satisfied

(this point is made on page 165 of Barlow et al. (1972)). For example, it

is generally believed that mortality rates increase with age. The ages 15

through 35 crude mortality rates per 10,000 insured male lives are shown in

Figure 1. This data is taken from the 1973 Reports of Mortality and Mor-

bidity Experience of the Transactions of the Society of Actuaries. The

rates are the 1965-70 ultimate experience and are based upon approximately

35,000 insured lives in each age group so that the standard error should be

roughly 1.7 per 10,000 lives. The hypothesis that the mortality rates tend

to increase with age seems to be confirm,:d by the data in Figure 1. Powever,

it is not at all clear that the underlying regression function is strictly

increasing over this range of ages. In fact, actuaries now believe that

there is a "bump" in the mortality rat at about age 20 and that the mor-

tality rate actually decreases from, roughly, ages 20 through 25. The

1965-70 graduation. were among the first to reflect this "bump."
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The "usual" order restricted inference procedures do not allow the data

to give rise to such "bumps" and the least squares order restricted estimate

of the mortality rate based upon this data is actually constant from ages

19 through 28. These considerations suggest that inference procedures which

account for a somewhat less restrictive monotone relationship could be of

value. This paper is an account of our studies of one method of modeling a

monotone relationship which allows the regression function to go counter to

the overall trend over short ranges of values.

Def: Suppose 6 = (l2 6..- k ) is a vector of parameters and

w = (wlw 2,...,wk) is a vector of positive weights. We say that 6 is

"decreasing on the average from the left" (DAL) with respect to w provided

.w. w.•(L 6w); i =1,2.-,k. (1.1)
1 .2 k j=lk Jelj1

Increasing on the average from the left (IAL), increasing on average from the

right (IAR) and decreasing on the average from the right (DAB) are defined

analogously.

Clearly if 0 1> -2 ;,--eek  then 6 is DAL (also IAR). The order

restriction, DAL, is closely related to the "starshaped ordering" discussed in

Shaked (1979). A vector 6 is said to be lower-starshaped if, in addition

to (1.1),6k - 0. Shaked (1979) studies estimates of normal and Poisson

* means subject to the restriction that they are starshaped and gives examples

from reliability theory and from branchinir processes in which such orderings

are of interest.

In Section 2, assuming that 6 is a vector of normal means, we derive

the restricted mnximum like]ihood estimat- of 0. Our restrictions are*
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somewhat more general than those considered by Shaked (1979), in that we

allow "%", "" and "" to be intermixed in the restriction (1.1). Our

method of derivation is different from that of Shaked and leads to the dis-

tributions of likelihood ratio statistics for tests where either the null

or alternative hypothesis requires that the parameter vector is monotone on

the average. These hypothesis tests are discussed in Sections 3 and 4.

The test statistics have null-hypothesis distributions which are mixtures

of chi-square or beta distributions--the so-called chi-bar-square (X2)

and E-bar-square (E ) distributions.

2. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATES. Suppose Y1,Y2 ,' 'Yk are

independent random variables and that Y. " n(eiai0 2) where al,a 2 ,''-,sk

are known positive constants. Let w. = (a.02)- 1  and W. =' w ; i =1,2,

• ',k. We wish to find the maximum likelihood estimator (MLE) of

e = (e 1 ,e2 ,... ,ek) subject to the constraints

= e. (or equivalently e. = 0.); £=1,2," ,m, (2.1)6i 2.-ii 1£-

where i = w -I i =1 an2 ... <i is an ordered subset ofwhr I jl. lWj~j ndi<12 m l

[l,2,''',k]. Using the constraints (2.1) to write e. j =1,2," ,m in

terms of 0 for L [ii2,'" we obtain

i-l

11 a we (2.2)
ij =a= l hja =ial .

where

hla = Wi-i Wiv w 1 -1l

W W



(We adopt the convention that a product over the empty set equals one while

a sum over the empty set equals zero.) Substituting (2.2) into the log-

likelihood function and equating the derivatives to zero we obtain the

equations

- ) (y -6. )h w. 0; j f [il9i i (2.3)

a=.L(J) (Ya- 'iaha, (J) )wP 2

where 1(J) I iff i < j < i If we define Y = W l

then the equations (2.3) have a surprisingly tractable solution.

Theorem 2.1. The solutions to the equations, (2.3), are given by

yj =j + b=,t(j) (Yib-Yib-)wW ib j f lIlli 29-- "i ml (2.4)

b b b b

which implies that

eib  Y b + a=b+l( i -i -l)Wi i b=l2'..(.5

Proof: We begin by arguing that if the vector e satisfies (2.4) and the

restrictions, (2.1), then its values for . C [il~i 21,..i m must be given

by (2.5). First, note that

1 -  il-Ii i il-l j=1  ',I i

-- m - -i

i1 -1 b-l ~i b 9w 1)-1 .by il  -W-  1 WW- + b~ (Yib-Yi -IWiii: y. l-1w. w-l] +Y1 w, W
I + m--7 )w. W-I

1 1 '1 I 1 1 b=2i b b b b

y + = y - )w. W-1

i.I b~pi1 b h h
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We proceed by induction. Assuming (2.5) holds for b and noting that

Lb we W e we consider
iz bi ibb

W-1 ~+ ' b+1 1

ab+1 ~i b+1_1 3 W Wb +W. bi 1 -W

=W 1 [l 1b +Wi i y- WW- W y -
b+11 ib ba a a a b+l- b+1- b

(WW* ) (y -.Y -) -

i +-1- i b a-b+l - i

i +1-1[ b+ _1ib+ _1 i b+ 1 a bl ia a- a 1a a a

-1 F
= 1ib1 + -lvb 2 yi a- -1 +W v i aba i i- ia.

W. LW. (y-. )W)w m ( ) 26b +1 b- l b b+ 1 ib ~w

- m / -

Thus, byidcto,(.5 hodWo b = 1',2,

Z( (y -i )w' Wy -Yi)W .il-l M.(27
b 1- b 'b b b b

fnorde to establis he qin (2.6) eea, hols indoron Asum tha since

hod 1o cfl. Th- n

m m m
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Lm y- )wW1 y- ) w-I +Em ( Y)
b=c i b -ib- 1  b bi b=c+l i 1 - 1-

=w-1 -Y i m +. y - .)w .wT- 1,
bb ic c b b ib-bJ

+ I +b=c+ )w i I ] i  i i )
b b b b

+ (V. . )w) I wI+ w-j -b 1) b b h 1 L bI c 11

-1 m -

W 'c' ccJ -1y 01wiC+ c+l ' b -,1b )hb,c+l b

[l +w. w ji
0 C

= y [Yic-ichcc W i +W c " w i -1 b=c+l (YIb 6 b )h b  c + l i b

(y i-ib )h ,cw ib

using (2.7),(2.5), the induction hypothesis, Wi h and the fact that
-I c

hb,c+1 • . W = hb. Since (2.6) holds for all 1, the theorem is
L c C

established.

We now show a remarkable property of the solutions given by (2.4) and

(2.5). Since 8. = w
c "c- j l .2 J

2 C 
+ W

Sc e w =W .8 +w 8.

= I ij 'i C-1 c 1 CJ: J c- ic c ie

w. We. (2.8 )

W . (*

= ( . - )w.w1
w . + (:, , - .-I i, b=c+! i, 'il, I) ib



by (2.5). Suppose I ( fil,,'' -mJ and also that i is the largest
12 m c

element of [11 ,i 2  *'i 3 I such that i < i. Then, using (2.8) and (2.4),

W-1 Z1 w
-i = i-I j=l j j

- [ c w + i- 1  ww- w1{ j=l + j=ic+l jw j]

m -+ i-i (2.9)

-w if +y -w -I +)w-i+i-yi-ibcl i (Ybib-ii W 1i W

cl b b b b-+ -- Yi-i +(m -- )w. W- I .
) Wib [Wi 1-Wi

= y -1 Eb= c+ l (Y ib -Y i b - i b  i b

Thus, comparing (2.4) and (2.9), we see that

>i 6. iff y- > Yi.

regardless of i1 ,i21 " 'm It follows that if we wish to find the MLE of

the vector e subject to the constraints

s () 0. (equivalently 1 ($) 8.); i=1,2,''',k

then we know that the i- constraint 6 = 8. needs to be imposed if and

only if y < (> ) Y (see Barlow et al. (1972), page 89).

Compared to other restricted optimization problems, this is a note-

worthy property and it allows us to write the solutions in a concise form.
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Adopting the standard notation, a = maxf-,OJ and a minfa,O) we

have established the following theorem which generallzes the work of

Shaked (1979).

Theorem 2.2. The MLE of the vector 6 = (6] 6 subject to the
'2' 'k

constraints 6 ( >) () (5) 0.; i =1,2,",k is given by

0.= + (y -Y ) w.Wj ; =,2, --' ' k
L~ I j=i+l J *j-1 ,J

where

(max(Ty, +) H
(*i'vi) = K(,i i) if the i t- h  constraint is t

(mm (Y , -)

For example, if the restrictions require that 6 is DAL, then

k --6, = max(yily i  + Lj=i+1 (Y-yl w. W . (2.10)

If h is some integer (I < h < k) and our restrictions require that

"61 72 '' h > 6h+l > k, then

,. min(yi,y.) + (y -Y )w.W for i < h while
1J=i+ J J-1 j j

=k - )+ w.W - I  for h< S

Smax(yi.,yi  + j =(i+( 1Yj-_ , W

The MLE of 6 subject to the requirement that 6 is lower starshaped
is DAL and k Z 0), say , is easily expressed in terms of the 6

given in (2.10). In particular,

-7
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i if Yk <>0.

The proof of this is a straightforward verification of the properties char-

acterizing projections in Theorem 7.8 of Barlow et al. (1972).

3. RESTRICTED HYPOTHESIS TESTS. Consider the problem of testing the null

hypothesis H 6 = B2 . k when the parameter vector 6 is known

to be DAL. In other words, test. H against the alternative H -H (H
01 0 1

but not H 0) where HI: 61 ; 62 6' . We consider a likelihood ratio

statistic which has a surprisingly tractable distribution.

It is well known that the MLE's, under Ho, are given by

-- 1Wk Zk o2
. W .l wiYi  (free of 0); i 1,2,' -,k.

and

-2
-2 1 Lk (Y. -Y)

i=l a.

2Since the MLE of the vector C which satisfies H does not depend on 0

it follows that the MLE's under HI are 6, as derived in Section 2 and

2 k -
k  1

i=1 a.I 1

The likelihood ratio, A, is then riven by

k /2

Now



i=1ii

k

k (-.)w+ Lk --"k(iYw

=. _(Y w + i -Y)w. +Z= (Y - " ) w. (3.1)

The class of vectors which satisf, H I form i closed convex cone

which contains all the constant functions. The vector 8 is the weighted

least squares projection of the vector Y onto this cone so that

Zk  (yi _ i = L k ( . )- W. = 0
i=l 1 i1 1 1 'i=l 1 1 1

(see Barlow et a]. (1972), page 318). Thus, the last term in (3.1) is zero

and a likelihood ratio test rejects H0  in favor of H1  for large values of

tk -. _) w

Q = 1A k - 1 (3.2)

i= 1

Suppose that il,i 2,...,i are those indices where 6 =8O when12 m i- 1

6 is obtained (i.e., those indices for which Y. K '.) " Using (2.4) and

(2.5) we can write

11 i 1 al i i a b=a+l(ib ibl bbi a

Z h m + _l) .2 ww -w.
"w al ia a a" a b Zb1 1 amm P (Y -- 1 2

+ a= I bY. - b)w W- b] ( i a).i -

-7 -Slw + EM S 2(W i -W.
a=l~y Wia a=l a ia-i ala_

where S =b=(Y. -ib- )w b W  " Adding the first term from each of the

above sums arid u-;n, ( . )w, o h .,%i[

1' - ~~ -
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[(Y. -Y.11_1 )W.l1- W- -S2  w 1 + [(Y'1 i-1il i *12 " 2 W i

(Y - 2 w1 W + W S 2

The term, WilS2 , cancels part of the second term of the second sum. Pro-
11 2'

ceeding, using similar reasoning we obtain

k= m (Y -Yi )  w.W. (33)
= 1 =1 1 - i i "

a. a a 6L a

A fairly simple induction yields

ki=l(Yi-Y) wi = Ei=2 -Y 2 - 134

Using (3.3) and (3.4) in our expression for Q we obtain

. zE ifT 1

1 1

where I-- i, " nd Z. 1/2 1/2 -1/2
S 3i -Yi -1)wi W i-W ; i =2,3, .,k.

Under H0, Z2 ,Z 3 ,' ,Zk  are independent, standard normal random variables

so that for a given set of indices, I = (ili 2 ,'',i. : Q has a beta

distribution with parameters (k-m-l)/2 and m/2.

Now, suppose I C [2,3,-.-,k) = I and that E is the event
.10 1

(Zi  0; i E I and Z. < 0; i I ]. If we let TI z then we may writei I i thnwemy rt

TT- t IE P(EI )

0

* 
= P[B(k~m~l)/2m/2 t] • (1/2) k - 1

since T1 0 1/T10 is independent of E .

04
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If we partition the event [Q t] by intersecting it with all such events

E Iand then collect term~s, we obtain the following theorem.

Theorem 3.1. In testing Hf) 6l =6 0 against the alternative
0 1 2 k

H -H where Hspecifies that the paramneter vector 6 is DAL the like-

lihood ratio statistic Q = 1-A~1  (Lk (6l Y)w.) 1 (Y .- )2  has

a null hypothesis distribution given by

P tiees~~ =LEklk-) (112 )k1P[B~k) 2 t3-at

k-l( M2 kml/,/' t

whre al t, are indpendent standard noma random variables.

parf i at HL inot tru tnwand repl( L' i acen to by degeerat inou

0 1 hn >0 1O > 1)

espesasio fothndsythtei distributed as

i1~~ [k-6jA] 1 z ) Ao

where. ,7,21 -zk- are independent stndr 2omlrno variables.an
wher infcH0iZo7rete e a elc yYiGi u

exrsinfrQ n aihtQisdsrbtda
k-1 ~ ~ 7--

p ~ ( 6 A1"il(Zi+ 0 37
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6. 1/( WI/ W-I (i+ wi i +l i+l 138

Note that if the parameter vector 0 satisfies H then 6 > 0; i 1,2,1

22 2
• '',k-l. Moreover if 6. 0 then [(Zi+6.) A0 1] a [Z. AC)] and

[(Z.+. ) VO] 2 - [z i Vo 2 . This implies that (3.7) - (3.6) and shows thati 1

our likelihood ratio test is unbiased.

Of course the same distribution theory holds for testing H0: = 2

against the alternative H -H if H specifies that 6 is

IAL, IAB or DAR. It is perhaps somewhat surprising to note that we may

intermix the inequality signs. For example, the same distribution theory

would hold for testing H0  against H -H0  if H1  specified that

1 e2 ' h Z: 6h+1 " k for some value of h.

if 02 is known, a likelihood ratio test of H0  against H -H0  wouldI10

reject for large values of

k -2R = -2 ln A Lk ( e i -Y)w

The distribution of R is the same as that of

k-I ]2

Li=l[(Z+6) AC1 (3.9)

where Zi  and 6. ; i =1,2,- ",k-1 are defined as before. If the nulli 1

hypothesis is satisfied then 6. = 0; i = 1,2,. •,k-1 and if H1  is satis-

fied then 6. k 0; i =1,2,... ,k-1. Thus, the test is unbiased and the1

null hypothesis distribution of R is given by

P[ ti = l(k-1) (1 12) k-1 i44 2 t] (3.10)P[Rmt!= r=O\ m -

'Ai. - -
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2where Yn denotes a standard chi-square random variable with m degrees

freedom ()O = 0).

2
Consider the problem of testing If as a null hypothesis. If 0

known then a likelihood ratio test reje t:; 17, fur large values of

R E =l(Y i- 6i )w wi

The random variable2 R' L-, distributed a,;

Yk-i ]2
i=l[ (zi+6i )  (3.1)

and 6. 0 if H is true. Thus [(Z.+6. VQ02  V Zi vO] 2  and
11 1

sup(H1 PS[ R' - It]I= P Ho0[R' >t] =0O m 1/)-P[ t. 312

if 02 is unknown, we cannot estimate 0 2  in the denominator of the like-

lihood ratio since we have only one item from each population. Thus, in

this case we cannot construct a likelihood ratio test.

Assume we have a random sample of size n from each of our k normal

populations and let X. denote the mean of the items of the sample corre-

sponding to the population with mean 6. ; i =1,2,-- ,k. The maximum like-
1

lihood estimators subject to the constraints, (2.1), are given by (2.4) and

(2.5) with y I replaced by X .

If 02  is unknown, a likelihood ratio test rejects for large values of

k 2
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1k -
where X k , i~ X.. Since the Xij -X. are independent of the X.i~l 1 ii 1 1.

and since 1 k = 1 (X -X) 2 wi/n has a chi-square distribution with k(n-2)

degrees freedom it follows that Q has the same distribution as

k-i 2
i~l[(Z i+6 i ) 1,0]-

ii-1i i i=k I

where N = k-n, ZI,Z2'' ,ZN- 1  are independent standard normal variables,

and q6. is defined by (3.8). The following theorem is a consequence of1

this representation.

Theorem 3.2. The likelihood ratio test of H0  against H -H based upon

Q is unbiased and the null hypothesis distribution of Q is given by

P(Q tj = L~~~k-1 k-1)l /)k- [ ]

Pm=0 m (k-m-l)/2,(N-k+m)/2 > ]

If a2  is known then the likelihood ratio statistic R = -2 In A

gives rise to an unbiased test and its null hypothesis distribution is given

by (3.10).

In testing H as a null hypothesis when a is known the likelihood
l1

ratio statistic R' = -2 ln A = k l(X-e) 2 . nw. has a distribution which
i1 1 i i

may be represented as in (3.11). Thus, the null hypothesis distribution

*is as in (3.12).

If the common sample size, n, is larger than one, we can test HI

as a null hypothesis when a2  is unknown. In testing H against '-HI,

reject H for large values of
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_' -2 /  _ _ _ _ _k ( . ) 2 .n w .
k=_1 k 2 . ( 3 .1 3 )

+ k - (
k .(XiXi) 2 w k (X-.-nw + -X2 (1
i=1 i l i 1 1 i 1

It can be argued that Q' is distributed a.

k-1 [r(z +6E i = l [ ( i i ) O

Sk-If )Z. + . N-1 7,,'
4,i i=k

where ,Fn&. is defined by (3.8).

The following theorem is a result of this representation.

Theorem 3.3. A likelihood ratio test of HI against -H rejects

for large values of Q' (as given in (3.13)), is unbiased and

Q, _-1 k-1)l-

supEH1 P[Q'>t] =1H0[Q' >t] =m=(kl)( 1 / 2 )k- P[B m/2,(N-m-I)/n t].

4. CONCLUDING REMARKS. If we wish to rrplace "<" or "a" by "1=y in

the restriction imposed by our alternative hypothesis, H1 , the appropriate

distribution theory may be found from the results in Section 3 by appropriate

adjustments in the degrees of freedom.

We conductel a Monte Carlo study of the power of the test statistic,
k --2

= 1(8 -Y) wi, for testing H0  against HI-H 0  (H e8 is DAL) when

02 is known. Some of the results of that study are given in Table 1. In

this study we let k =5, a. =1; i =i,2," ,5 and 0 1. We approximated

the power of each of three test statistics at each of 28 parameter vectors,

6. This was done by randomly generating 2000 5-tuples of normal random

th
numbers where the i entry in the 5-tuple has a normal distribution with

,r1 i
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mean e and variance 1. The entries in the table are the fraction of

times the test statistic exceeded the .05 critical value computed from

its null hypothesis distribution (P for )(-, using (3.10) for R ard

using Theorem 3.1 in Barlow et al. for X ). Corresponding to each param-

eter vector we have given its spacing and a measure, A, (A2 = Lk- )2

of its distance from the null hypothesis HO .

The first thirteen 0 vectors in the table are decreasing and the

-2 2power of X is significantly greater than that of either R or 2
2

However, for these vectors R is significantly more powerful than is X 2

The last fifteen 6 vectors are DAL but not strictly decreasing. Here R

2 -2 2.
is significantly more powerful than either X or . Note that X is

-2
more powerful than X for the last six 0 entries.

We have been unable to substantially relax the assumption of equal

sample sizes in Sections 2 and 3. In other words, this analysis depends

very heavily on the assumption that the weights in the restriction imposed

by H1 are proportional to the variances of the sample means. If we relax

the assumption of equal sample sizes we must be willing to use weights

2 1
wi = ni (a F in our restriction, H1. This latter approach is the one

4i taken in Shaked (1979).

A different definition of decreasing on the average can be found in

the work of Robertson and Wright (1981). They define the parameter vector,

6, to be decreasing on the average (DA) if i -  -i' 0 m (k-i) k=i+l

i =1,2,...,k-l. If 6 is DAL or IAR then 0 is DA, in the above sense.

Robertson and Wright (1981) derive maximum likelihood estimates of a vector

of normal means subject to the restrietion that it is DA and discuss testing

homogeneity of 6 when it is assumed to be DA and testing DA as a null



19

2 -2
Table 1. Power Functions of and R.

Power Power Power

(e1 ,e2 ,e3 ,e4 ,o5) Spacing of X of x2 :f R

(0.0,0.0,0.0,0.0,0.0) 1,1,1,1,1 o .061 .047 .058

(o.4,.3,0.2,0.1,0.O) 5,4,3,2,1 .316 .o64 .083 .084

(1.0,.75,0.5,.25,0.0) 5,4,3,2,1 .Y91 .089 .173 .147

(2.0,1.5,1.0,0.5,0.0) 5,4,3,2,.1 1.58 .206 .459 .381

(4.0,3.0,2.0,1.0,0.0) 5,4,3,2,1 3.16 .743 .913 .874

(i.0, 9,.8,.7,0.i) 10,9,8,7,1 .707 .082 .146 .118

(2.0061.,1.6I.h,0.2) 10,9,8,7,1 1.41 .172 .359 .286

(5.o,4,5,4.o,3.5,0.5) 10,9,8,7,1 3.54 .838 .950 .926

. .±,0.0) 2,2,2,2,1 .089 .059 .052 .060

(.2,2,2,.2,0.0) 2,2,2,2,1 .179 .061 .056 .o64

.5,.5,.5,.5,0.0) 2,2,2,2,1 .447 .073 .081 .079

(1.0,1.0,1.0,1.0,0.0) 2,2,2,2,1 .894 .101 .166 .126

(5.0,5.0,5.0,5.0,0.0) 2,2,2,2,1 4.47 .967 .992 .984

(.3,0.0,.1,0.0,.1) 4,1,2,1,2 .225 .061 .060 .071

(.6,0.0,.2,0.0,. ) 4,1,2,1,2 .490 .071 .083 .101

(1.5,0.0,.5,0.0,.5) 4,1,2,1,2 1.22 .144 .197 .225

(3.0,0.0,1.0,0.0,1.0) 4,1,2,1,2 2.45 .471 .583 .653

(6.0,0.0,2.0,0.0,2.0) 4,1,2,1,2 4.9o .988 .989 .997

(.4,.3,0.0,.1,.2) (5,4,1,2,3) .316 .063 .o66 .079

(.8,.6,o.o,.2,.4) (5,4,1,2,3) .632 .075 .098 .110

(2.4, 1.8,o.0,.6,1.2) (5,4,1,2,3) 1.90 .296 .397 .446

(4.8,3.6,0.0,1.2,2.4) (5,4,1,2,3) 3.79 .880 .913 .946

(.2,0.0,.i,.l,.i) (3,1,2,2,2) .141 .059 .052 .o63

(.4,0.0,.2,.?,.2) (3,1,2,2,2) .283 .064 .058 .070

(1.2,o.o,.6,.6,.6) (3,1,2,2,2) .849 .099 .095 .128

(2.4,0.0,].2,1.2,1.?) (3,1,2,2,2) 1.70 .244 .221 .329

(4.8,0.0,2.4,2.4,2.4) (3,1,2,2.,2) 3.39 .795 .696 .867

(7.2,0.0,3.6,3.6,3.6) (3,1,2,2,2) 5.09 .994 .969 .997
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hypothesis. They assume that 0 is known and consider likelihood ratio

statistics whose null hypothesis distributions are chi-bar-square distri-

butions.

The maximum likelihood estimates of mortality rates discussed in Sec-

tion 1 subject to the restrictions that they are IAL and DAR are given in

Figures 2 and 3. Surely, actuaries would feel that either one of these esti-

mates requires additional smoothing. However, they both give an indication

of the "bump" at age 20 and either one (or their average) might provide a

better starting point than the crude mortality rate or its "isotonic

regression" (which is oversmoothed) for the graduation.

I.i

4

. * .*-.,
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